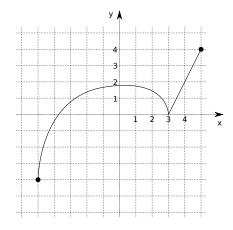
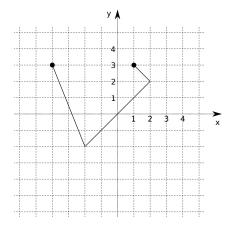
Homework 1 MA 123, Ivan Zaigralin Due May 24

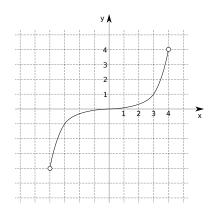
Be first to report a math error for extra credit.


Read Stewart chapter 1. Alternatively, read

http://en.wikibooks.org/wiki/Calculus/Precalculus.


Both sources contain ample selections of practice exercises.

In the following 6 exercises, figure out if the given object is a function. If it is, then find its domain and range, sketch it (if given by a formula), determine whether or not the function is one-to-one, and check if it is even, odd, or neither.


Exercise 1.

Exercise 2.

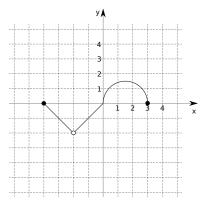
Exercise 3.

Exercise 4.
$$f(x) = x^4$$
.

Exercise 5.
$$f(x) = \sqrt{x-5}$$
.

Exercise 6.
$$f(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0 \\ \sqrt{-x} & \text{if } x \le 0 \end{cases}$$

Exercise 7. Find the domain of $f(x) = \frac{2x^3-5}{x^2+x-6}$.


In the following 3 exercises, determine whether a given function is even, odd, or neither.

Exercise 8.
$$f(x) = \frac{x^2}{x^4 + 1}$$
.

Exercise 9.
$$f(x) = \frac{x}{x+1}$$
.

Exercise 10.
$$f(x) = \frac{x}{x^2 + 1}$$
.

Exercise 11. The function f(x) is given by a graph. Plot the following functions, each on its own coordinate axes: f(x-2), f(x) - 2, 2f(x), f(2x), f(-x), -f(x).

Exercise 12. Plot the following functions: $f(x) = 2\sin(x - \pi)$, $g(x) = \cos(\pi x) + 1$.

In the following 2 exercises, find (f + g)(x), (fg)(x), $(f \circ g)(x)$, $(g \circ f)(x)$. Simplify the best you can.

Exercise 13. $f(x) = \sqrt{x}$, $g(x) = x\sqrt{x}$.

Exercise 14. $f(x) = x^2 + 1$, $g(x) = e^x$.

Exercise 15. Find $(f \circ g \circ h)(x)$ where $f(x) = \frac{x}{x+1}$, $g(x) = \sin(x)$, h(x) = |x|.

In the following 2 exercises, find the functions $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$, and their respective domains.

Exercise 16. f(x) = 1 - 3x, $g(x) = \cos(x)$.

Exercise 17. $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$.

Exercise 18. Find the domain of a function $f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$.

In the following 6 exercises, solve the given equations.

Exercise 19. $e^{7-4x} = 6$.

Exercise 20. $e^{2x} - 3e^x + 2 = 0$.

Exercise 21. $e^{ax} = ce^{bx}$, where a, b, c are constants and $a \neq b$.

Exercise 22. $ln(x^2 - 1) = 3$.

Exercise 23. ln(x) + ln(x - 1) = 1.

Exercise 24. $\ln(\ln x) = 1$.

Exercise 25. Sketch the given curve: $x = t^2 + t$, $y = t^2 - t$, $t \in [-2, 2]$.

Exercise 26. Eliminate the parameter to find the Cartesian equation of the curve: $x = \sqrt{t}$, y = 1 - t.