Homework 1 MA 123, Ivan Zaigralin Due May 24 Be first to report a math error for extra credit. Read Stewart chapter 1. Alternatively, read http://en.wikibooks.org/wiki/Calculus/Precalculus. Both sources contain ample selections of practice exercises. In the following 6 exercises, figure out if the given object is a function. If it is, then find its domain and range, sketch it (if given by a formula), determine whether or not the function is one-to-one, and check if it is even, odd, or neither. ## Exercise 1. ## Exercise 2. Exercise 3. Exercise 4. $$f(x) = x^4$$. Exercise 5. $$f(x) = \sqrt{x-5}$$. Exercise 6. $$f(x) = \begin{cases} \sqrt{x} & \text{if } x \ge 0 \\ \sqrt{-x} & \text{if } x \le 0 \end{cases}$$ **Exercise 7.** Find the domain of $f(x) = \frac{2x^3-5}{x^2+x-6}$. In the following 3 exercises, determine whether a given function is even, odd, or neither. **Exercise 8.** $$f(x) = \frac{x^2}{x^4 + 1}$$. Exercise 9. $$f(x) = \frac{x}{x+1}$$. **Exercise 10.** $$f(x) = \frac{x}{x^2 + 1}$$. **Exercise 11.** The function f(x) is given by a graph. Plot the following functions, each on its own coordinate axes: f(x-2), f(x) - 2, 2f(x), f(2x), f(-x), -f(x). **Exercise 12.** Plot the following functions: $f(x) = 2\sin(x - \pi)$, $g(x) = \cos(\pi x) + 1$. In the following 2 exercises, find (f + g)(x), (fg)(x), $(f \circ g)(x)$, $(g \circ f)(x)$. Simplify the best you can. Exercise 13. $f(x) = \sqrt{x}$, $g(x) = x\sqrt{x}$. **Exercise 14.** $f(x) = x^2 + 1$, $g(x) = e^x$. **Exercise 15.** Find $(f \circ g \circ h)(x)$ where $f(x) = \frac{x}{x+1}$, $g(x) = \sin(x)$, h(x) = |x|. In the following 2 exercises, find the functions $f \circ g$, $g \circ f$, $f \circ f$, $g \circ g$, and their respective domains. **Exercise 16.** f(x) = 1 - 3x, $g(x) = \cos(x)$. **Exercise 17.** $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1-x}$. **Exercise 18.** Find the domain of a function $f(x) = \frac{1 - e^{x^2}}{1 - e^{1 - x^2}}$. In the following 6 exercises, solve the given equations. **Exercise 19.** $e^{7-4x} = 6$. **Exercise 20.** $e^{2x} - 3e^x + 2 = 0$. **Exercise 21.** $e^{ax} = ce^{bx}$, where a, b, c are constants and $a \neq b$. **Exercise 22.** $ln(x^2 - 1) = 3$. **Exercise 23.** ln(x) + ln(x - 1) = 1. **Exercise 24.** $\ln(\ln x) = 1$. **Exercise 25.** Sketch the given curve: $x = t^2 + t$, $y = t^2 - t$, $t \in [-2, 2]$. **Exercise 26.** Eliminate the parameter to find the Cartesian equation of the curve: $x = \sqrt{t}$, y = 1 - t.