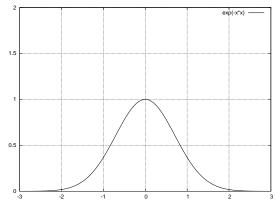
Homework 7 MA 123 A2, Summer I 2010

Be first to report a math error for extra credit.


Read Stewart sections 5.1-5.3. Alternatively, read http://en.wikibooks.org/wiki/Calculus/Indefinite_integral and http://en.wikibooks.org/wiki/Calculus/Definite_integral. Both sources contain ample selections of practice exercises.

Exercise 1. Find left and right Riemann sums S_l and S_r for $f(x) = x^2$ on the interval [0,5] with five terms each. Then, find

$$\int_0^5 x^2 dx$$

and compare the results. Find the estimate by taking the average: $\frac{S_l+S_r}{2}$.

Exercise 2. This exercise requires a calculator that can compute e^x .

The function $\int e^{-x^2} dx$ cannot be represented by an elementary algebraic expression, but we (and our computers) can integrate it numerically. Estimate $\int_0^2 e^{-x^2} dx$ by taking the average of the left and right Riemann sums, each with three terms.

Repeat, but now take six term sums. Compare with a more accurate value obtained by a computer: 0.882...

Exercise 3. Find
$$\int_{-2}^{3} (x^2 - 3) dx$$
.

$$\left[-\frac{10}{3}\right]$$

Exercise 4. Find
$$\int_0^1 x^{\frac{4}{5}} dx$$
.

 $\left[\frac{5}{9}\right]$

Exercise 5. Find $\int_{1}^{2} (1+2y)^{2} dy$.

 $\left[\frac{49}{3}\right]$

Exercise 6. Find $\int_{-1}^{1} e^{u+1} du$.

$$[e^2 - 1]$$

Exercise 7. Find $\int_0^2 |2x-1| dx$.

Exercise 8. Find $\int_{-1}^{0} (2x - e^x) dx$.

$$\left[\frac{1}{e}-2\right]$$

Exercise 9. Find $\int_0^1 x(\sqrt[3]{x} + \sqrt[4]{x}) dx.$

 $\left[\frac{55}{63}\right]$

Exercise 10. Find $\int_0^{\frac{\pi}{4}} \sec^2 t dt.$

[1]